Communications

Synthesis of ML-3000, an Inhibitor of Cyclooxygenase and 5-Lipoxygenase

Janine Cossy* and Damien Belotti

Laboratoire de Chimie Organique, Associé au CNRS, ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France

Received August 11, 1997

Dual inhibitors of cyclooxygenase and 5-lipoxygenase of the arachidonic acid cascade have potential as agents for the treatment of arthritis.^{1,2} Recently, 2,3-dihydro-1*H*-pyrrolizine derivatives such as ML-3000 have been proven to selectively inhibit the enzymes cyclooxygenase $(IC_{50} = 0.21 \,\mu\text{M})$ and 5-lipoxygenase $(IC_{50} = 0.18 \,\mu\text{M})$.^{1,2} ML-3000 is the most potent and well-balanced dual inhibitor of both enzymes. However, the previous synthesis of this nonsteroidal antiinflammatory drug proceeds with poor overall yield (<5%).¹

Herein, we report a short and efficient synthesis of ML-3000 that features a thermal acid-promoted bicyclization of an ω -acetylenic amino ester. In a previous paper, we described a convenient synthetic method that provided access to polysubstituted pyrrolidines based on thermal cyclization of ω -acetylenic amines.³ A smooth thermolysis of ω -acetylenic amines **A** in the presence of 1 equiv of acetic acid or pivalic acid without solvent led to cyclic enamines **B**, which could be reduced to the corresponding pyrrolidines C. Furthermore, we have reported an extension of this method in which the enamine **B** is trapped intramolecularly with an appropriate acceptor such as an ester group to provide an efficient synthesis of substituted 2,3,5,6-tetrahydro-6-oxo-1H-pyrrolizines **D**.^{4,5} (Scheme 1).

The ω -acetylenic amino ester **3** required for the synthesis of the 2,3-dihydro-1*H*-pyrrolizine skeleton of ML-3000 was obtained from 1-chloro-3-phenyl-2-propyne (1) in two steps. Treatment of chloride 1 with isobutyraldehyde under basic phase-transfer catalysis⁶ in the presence of a catalytic amount of NaI produced the aldehyde 2 (90%). This aldehyde was condensed with methyl glycinate hydrochloride under reductive amination conditions⁷ to furnish the ω -acetylenic amino ester **3** (80%). In the key step, the tetrahydro-6-oxo-1*H*pyrrolizine 4 was isolated in good yield (68%) when the

(6) Desty, J.; Belotti, D. French Patent 9612760, Oct 21, 1996.
 (6) Dietl, H. K.; Brannock, K. C. *Tetrahedron Lett.* 1973, 1273–1275.

^a Key: (i) isobutyraldehyde, cat. n-Bu₄NI, cat. NaI, NaOH/H₂O/ toluene, 50 °C; (ii) glycine methyl ester hydrochloride, NaB-H(OAc)₃, Et₃N, CH₂Cl₂ or 1,2-dichloroethane, rt; (iii) Δ , 150 °C, 1 equiv of t-BuCO₂H; (iv) (a) EtONa, (EtOCO)₂, EtOH, rt, (b) AcOH; (v) (a) NaH, THF, rt, (b) PhN(SO₂CF₃)₂, rt; (vi) (4-chlorophenyl)boronic acid, cat. Pd(PPh₃)₄, Na₂CO₃/H₂O, THF, reflux; (vii) (a) p-toluenesulfonyl hydrazide, cat. p-TsOH, EtOH, reflux, (b) NaBH₃CN, EtOH, reflux; (viii) NaOH, H₂O, EtOH, 80 °C.

 ω -acetylenic amino ester **3** was heated at 150 °C in the presence of 1 equiv of pivalic acid without solvent.^{4,5} The carboxylic acid side chain of ML-3000 was introduced by acylation of the tetrahydro-6-oxo-1H-pyrrolizine with diethyl oxalate under basic conditions.⁸ The resulting β -diketone 5 (77%) was entirely enolized. The introduc-

S0022-3263(97)01480-1 CCC: \$14.00 © 1997 American Chemical Society

^{*} To whom correspondence should be addressed. Phone: (+33) 1 40 79 44 29. Fax: (+33) 1 40 79 44 25. E-mail: janine.cossy@espci.fr.

⁽¹⁾ Laufer, S. A.; Augustin, J.; Dannhardt, G.; Kiefer, W. J. Med. Chem. **1994**, *37*, 1894–1897 and references therein.

⁽²⁾ Rabasseda, X.; Mealy, N.; Castañer, J. Drugs Future 1995, 20, 1007-1009.

⁽³⁾ Cossy, J.; Belotti, D.; Bellosta, V.; Boggio, C. Tetrahedron Lett. **1997**, *38*, 2677-2680.

⁽⁴⁾ Belotti, D.; Cossy, J. *Synlett* **1997**, in press.

Communications

tion of the *p*-chlorophenyl group was achieved by using a Suzuki cross-coupling reaction.⁹ After treatment of the sodium enolate of 5 with N-phenyltrifluoromethanesulfonimide,¹⁰ the resulting triflate $\mathbf{\hat{6}}$ (80%) was coupled with (4-chlorophenyl)boronic acid in the presence of a catalytic amount of Pd(PPh₃)₄ and Na₂CO₃/H₂O in refluxing THF to produce compound 7 (92%). Deoxygenation of compound 7 via the *p*-toluenesulfonylhydrazone¹¹ furnished the ethyl ester of ML-3000 (8, 90%), which after

(8) Snyder, H. R.; Brooks, L. A.; Shapiro, S. H. Organic Syntheses;
Wiley: New York, 1943; Collect. Vol. II, pp 531–534.
(9) Miyaura, N.; Suzuki, A. Chem. Rev. (Washington, D.C.) 1995, 95, 2457–2483.
(10) Ritter, K. Synthesis 1993, 735–762.
(11) Hutchins, R. O.; Milewski, C. A.; Maryanoff, B. E. J. Am. Chem. Soc. 1973, 95 3662–3668

Soc. 1973, 95, 3662-3668.

saponification¹ led to ML-3000 (77%). The structure of ML-3000 was confirmed by a comparison of its spectral data with those reported in the literature¹ (Scheme 2).

In summary, ML-3000 was synthesized in eight steps from 1-chloro-3-phenyl-2-propyne with an overall yield of 19%. The sequence features the use of a thermally induced bicyclization of an ω -acetylenic amino ester.

Acknowledgment. We are grateful to the Laboratoire L. Lafon for financial support.

Supporting Information Available: Full experimental procedures and spectroscopic data are available for compounds 2-8 and ML-3000 (5 pages).

JO971480O